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New Model of Decelerating Bluff-Body Drag
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A new model of the drag force generated by a freely decelerating bluff body is presented. The model is based,
mainly, on the premise that the wake of an object accelerating downwind in a moving fluid is identical to that of the
same object decelerating in the fluid at rest. After arguing for the drag of a wind drifter to depend only on a power
function of its speed relative to the wind, a Galilean transformation is used to provide a formula for decelerating
body drag of the form Fp ~ VA, The value of exponent 3 is dependent on the amount of external force applied
to the body, as well as on its initial and final drag coefficients and its initial speed. By implication, this exponent
depends on the specific history of the motion. Applications to powered and unpowered vehicles trailing a parachute
or any other high-drag devices are presented and discussed. The model is also shown to compare favorably with

parachute-test drop data.

Nomenclature
a(t) = instant acceleration or deceleration
by = initial value of the drag area used
in Eq. (18)
b, = time-normalized drag area difference used
in Eq. (18)
Csk = drag coefficient of a disk accelerating
in a static fluid
CiY = drag coefficient in steady motion

D.
Cint = initial value of the drag function

C(t) = instantdrag function; defined by Eq. (1)
D = characteristicdiameter
Fp = force of drag
F. = external force
F = net force applied on a moving body
K = constantused in Eq. (13)
S = reference surface area
Tyecr = decelerationtimescale
t}‘?ﬂ = ending time of the parachute inflation phase
Vi = speed at the end of an unsteady motion
Vi = speed at the beginning of an unsteady motion
Viet = speed of a particular reference frame
Viel = speed of a moving object relative
to the incoming air/fluid
Vr = terminal speed, which arises from Fp,
balancing F [Eq. (4)]
V(t) = instantspeed of the body
B = exponentdefined in Eq. (7)
) = acceleration modulus; defined by Eq. (6)
5 = initial acceleration modulus
£ = time increment
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Vehute air volume contained inside a parachute
and moving along with the parachute

Vdisk = volume of a sphere featuring the same
diameter as the disk located at its equator

0 = air density

Superscript

/ = quantities measured in an alternate

Galilean reference frame

Introduction

NFLATED parachutes and other high-drag objects often travel
along trajectories that are far from being characterized by a con-
stant velocity and constantdrag coefficient.!*> During flight or cruise
they may undergo unsteady motions such as during a turn maneu-
ver, or during oscillationscaused by accumulated excess air spilling
from alternate sides.>~'® Time-dependentspeeds are of course seen
duringparachuteinflationand alsorightafterinflation when the fully
inflated canopy then deceleratesto the terminal velocity regime.!’ =20
This means that, even at constant surface area, these objects may
feature a ratio Fp,(1)/ V (1)? thatis not only time dependent but also
motion- and trajectory-dependert. In other words, defining the drag
force of a moving body of constant surface area S through?!
Fp(t) = 3C(1)pSv(1)? ey
yields a time-dependent C(¢#) (or drag function). This force
coefficientis calculated solely from the independent measurements
of S, Fp(t), and V (¢), the latter usually being the speed of the body
relative to the air/fluid at infinity. For example, Iversen and Balent
reportadrag functionchangingin therange of 0 < C(¢) < 101in their
tow tank study of accelerating disks.2> Higuchi et al.,”® Balligand
and Higuchi,**? and Strickland and Macha®® also showed C () to
change by similar amounts for disks deceleratingin a tow tank?*~23
and for freely decelerating high-speed porous parachutes Addi-
tionally, these investigators found that in the right conditions the
drag of decelerating objects may reverse directions as a result of
violent wake recontact, thus, becoming a pushing force in the man-
ner shown in Fig. 1 and yielding —5 < C(¢) < +4 (Refs. 23-25). Of
course, the drag functionis always equal to the value of the familiar
drag coefficient, thatis, C () = cons = C;*", when V (t) is constant
for long periods of time.
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Fig. 1 Schematics of the speeds and drag functions characterizing

disks moving in tow tanks.23—25

The mechanisms for such time dependence are many, as dis-
cussed, for example, by Sarpkaya and Isaacson! and by Sarpkaya.
Accelerated and decelerated motions imply a host of new phe-
nomena caused by a changing Reynolds number, including time-
dependent vortex shedding intervals and locations, hard to predict
boundary-layertransitions,laminar-to-turbulentflow transitionsand
wake recontact. All of this has been documented by several tow tank
studies of cylinders, plates and disks at low and medium Reynolds
numbers (see Refs. 27-35) and in parachute test drops at high
Reynolds numbers (see Refs. 17 and 26). Most important, such
complexity makes it is very difficult to calculate from scratch the
explicit time evolution of the drag function C(¢), given that it is
not only specific to the trajectory studied and forces applied, but
also to the history of the motion before being accelerated or de-
celerated. This is particularly true for decelerating motions, where
fast-moving sections of wakes created before deceleration may be
interacting again with the (now) slow-moving body moments after
the onset of deceleration.

Several theoretical descriptions of decelerating body drag have
been discussed in the past. These includes calculations using the
concept of apparent mass,' 72337 the slug wake model of Spahr
and Wolf,*® the fluid—parachute interaction model of Oler,*” and a
generalization of Oler’s model to include apparent mass by Yavuz
and Oler.*® Of note are also the numerical simulations of deceler-
ating disks by Strickland*! and their comparison with experimental
data by Higuchi et al.,* Balligand and Higuchi,?*** and Higuchi
and Strickland.*? In the following we present an alternate model of
deceleratingbluff-body drag, whichis notas general as Strickland’s
vortex computer simulations;*! but is more reliable than the many
models that use the added mass concept when separated flows are
present. The model is also much simpler and is based on the follow-
ing premises: first, that the wake of an objectacceleratingdownwind
in a moving fluid is identical to that of the same object decelerating
in the fluid being at rest; second, that the drag force depends weakly

on the instant deceleration a(¢) if the motion is characterized by a
“low enough” acceleration modulus; and finally, that the drag force
generated by a bluff body drifting freely with the wind at ground
speed V(7) and accelerating to the speed of the wind (Vy,q) goes
as Fp ~ (Vyina — V)P. Using Galilean transformations to translate
this result into deceleration drag provides the end result. Several
trajectories can be studied with this formula, including the motion
of a bluff body decelerating after moving in a state of acceleration,
deceleration, or constant speed.

Equivalent Wakes for Decelerating
and Accelerating Motions

Most relevant to the proposed model is the Galilean equivalence
defined by a body decelerating in still air and the same body ac-
celerating while drifting with moving air. Consider an object freely
decelerating in static air under the influence of drag and a given
external force, from an initial speed V; to a final speed V; . When
observed from a reference frame moving along at a constant speed
Viet > V;, this same object now appears to accelerate along with the
air, which is now seen moving at constant speed of Vg = — Vier.
The acceleration would be seen as generating speed changes from
V!==Vynat+Vto V/ﬁ. = —Viina + V;. Of course, the wake gener-
ated by the object must be fundamentally the same despite having
differentmotionsin each reference frame. This implies that an aero-
naut in a balloon accelerating from a ground speed of V/ =0 ft/s to
Vj’. = Vyina = 10 ft/s while drifting in a 10 ft/s wind would experi-
ence a wake identical to that of the same balloon generated while
decelerating in still air from V; =—10 ft/s to V; =0 ft/s. Such a
similarity can be mathematically expressed via the use of Galilean
transformations*® These relate the coordinates, x, y, z, and £, speed
V, and acceleration a of an object moving in one reference frame
to the corresponding set of coordinates and variables of the same
object seen from another reference frame moving at constant veloc-
ity Vi.t. More specifically, these transformations are formulated as
follows for a reference frame moving in the x direction:

/ / /

x'=x — Vit Y=y, 7 =z, t'=t

V)f = vx - Vrefa Ll; =day (2)
Note that by convention, all unprinted reference frames will corre-
spond to frames where the fluid at infinity appears at rest, that is,
thereisno wind. These equationsimply that the velocity components
in the y and z directions, as well as the acceleration componentsin
all three directions, remain invariant from one Galilean frame to
another. Moreover, the acceleration being invariant means that the
total force acting on the body is also invariant, as well as any in-
dividual force playing the role of the net force or combining with
others into a net force. For example, in the case of a drag force and
external force causing a one-dimensional motion,
Fo = F, Fj, = Fp, Foo=Feu 3)

tot = ext
where
ma(t) = Fo = —Fp + Fiy “4)

Equations (1-4) can be used to write down the transformation
properties of the drag function C(¢), to yield

C'HV'(t) =CV () &)

This result means that the product CV? is a Galilean invariant. It
also means that, when the unprimed reference frame is one where
the fluid is at rest, the drag factor C’(¢) measured in the primed
frame corresponds to a speed V'(¢) that is no longer equal to the
speed of the moving body relative to the incoming air.

In discussions to follow, frequent use is made of the acceleration
modulus, which is defined here in terms of the airspeed relative to
the wake-producing object:

8 = Dlal [ (Vi)? (©6)
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Such definition ensures that it coincides with the definition"?

that is used in cases where the fluid is at rest. However, Eq. (6)
also ensures that it is a Galilean invariant given that §' =
Dla'|/(V}y)* = Dlal/(Via)* =38.

re!

Trajectory Restrictions and Basic Assumptions

The proposedmodel is expected to be valid only within a specific
set of initial and final conditions,as well as with specific trajectories
and driving external forces. Fundamentally, one should always ex-
pect C(¢) to be very sensitive to initial conditions given that a decel-
erating body generates a wake that not only piles up on the backside
of the body but also on itself. This means that wake sections pro-
ducedatearliertimes, in particularbeforedeceleration,may strongly
interact with the wake sections produced during deceleration®

The model is defined for applications to bluff objects such as
parachutes, which are decelerating from a high initial speed and
high Reynolds number regime, that is, Re ~ 10°~10, to a termi-
nal velocity regime also characterized by a high Reynolds number.
Moreover, the following conditions are assumed to hold.

1) External forces exhibit an asymptotic behavior of the type
F..— Aa(t)+ B ast — 0o, where A and B are constants.

2) A body generatesa turbulentwake, but one thatis not necessar-
ily fully developed, with the largest eddies being somewhat smaller
than the size of the object producing the wake.

3) An acceleration modulus does not increase with time, but is
initially nearly constant and later converges to zero as t — 00, as
shown by the dashed curve of Fig. 2.

4) A value of the ratio of initial-to—final speeds (or V; / V) is small
enough to preclude the kind of wake recontact and drag reversal
described in Refs. 23-26. For the types of geometrically porous
parachute studied by Strickland and Macha,?® this would amount to
Vi/ Vi <4

Requirement 1 ensures that the decelerationprofile yields a speed
convergingto aconstantvalueas theresultof the applied forcescom-
bining into a null net force. Requirement 3 adds more restrictionson
the type of trajectory, in particular eliminating from consideration
most of the data generated in past tow tank experiments.>*~2%:35 In
general such experimentsuse a constantdeceleration, which leadsto
anincreasingaccelerationmodulus, in contrastto the decreasingac-
celerationmodulus encountered with freely decelerating parachutes
ordriftingballoons (Fig. 2). Typically,and at similar initial decelera-
tions and speeds, freely deceleratingobjectsmove faster than objects
being towed at a fixed deceleration, thus generating less of a wake
pileup. Thus, vastly differentwakes and drag functionsshould be ex-
pected in both cases. Requirement 4 also eliminates all trajectories,
freely decelerating®® or deceleratingin tow tanks,?>~2* that involve
the reversal of the direction of the drag force*!** [where C(r) < 0].
This requirement arises from the mathematics of the model being
too simplistic to handle correctly the effects of drag direction re-
versal [see subsequent Eq. (7)]. Finally, requirement 2 ensures that
the body is moving at high values of Reynolds number where flow
separation along its sides has already occurred. The drag generated
under this requirement cannot always be described by formalisms

Tow tank

......

Freely decelerating

Acceleration modulus

",
.,
LT

Time

Fig. 2 Acceleration modulus comparison between motions studied in
tow tank experiments and decelerations of freely moving vehicles.

based on the apparentmass concept >~20-*¢:37 A final requirement is
as follows.

5) The value of §(¢) should not exceed an upper bound approxi-
mating 10°.

This requirement is made to minimize (or eliminate) the explicit
dependence of the drag function C(¢) on the deceleration a(z), a
most drastic approximation. This idea can be motivated by the pil-
ing up of the wake on the decelerating body and on itself, which
leads to a partial washing-out (or averaging out) of the acceleration
history contained in various portions of the wake. Such erasing ac-
tionshould be furtherenhancedby requirement5, given thatthe high
Reynoldsnumber fluid flow around a deceleratingdisk is made up of
ideal or potential flows enveloping the disk and its turbulent wake.
Relative to the disk, such flows would be decelerating in a manner
primarily determined by the decelerationevolution of the incoming
flow, that is, a(z). On the other hand, and at low enough §(#), the
rates of speeds of the fluid particles moving inside the near wake
should be determined not by the instant value of a(¢), but rather by
the high shear forces that are prevalentwhen the disk is moving near
constant speeds. In fact, the accelerations of the near wake’s fluid
particles should be much greater than a(#) in this regime.** Thus,
having a large portion of the wake being weakly dependent on the
instant value of a(t) should lead to a drag function that is likewise
dependent. A calculation using Prandtl’s mixing length theory (see
Ref. 45) can be used to estimate the required low value of the accel-
eration modulus.** Following the argument by Potvin** applied to
the wakes of accelerating disks, one arrives at a bound of § (1) < 10°.
Note finally that assuming the drag function to depend weakly a(¢)
also entails C () being weakly dependent on the amount of exter-
nal forces applied. This should be so as long as these forces do not
directly perturb the flow about the body in any way other than by
imparting different accelerations. In this respect, forces provided
by thin ropes aligned with the incoming flow would satisfy this re-
quirement, but propellers attached near the drag-producingfeatures
of a body would not.

From Wind Drifter Drag to Decelerating
Parachute Drag

Drag Force of Wind Drifters

The equivalence between the wakes of wind drifters and of de-
celerating bodies in a static fluid will provide the starting point for
the derivation of the model. First accelerating wind drifters sustain-
ing no external force other than drag, that is, F, =0 in Eq. (4) are
considered. The corresponding decelerator example would be that
of a parachute (of the same shape) decelerating an unpowered ve-
hicle/payload along the horizontal. Under such conditions, a wind
drifter would settle in time into a constant speed that is equal to
the speed of the wind. When a start from rest is considered, the
drifter would start by accelerating with respect to the ground, all
of the while generating a drag force decreasing in magnitude be-
cause of its decreasing speed relative to the wind. This process
would continue until the drifter’s ground speed becomes identical
to that of the wind. At this point, the net force applied becomes
zero, and the drifter proceeds at constant speed according to New-
ton’s first law of motion. Thus, one obtains the following evolution,
using Eq. (1) and (4), here expressed in terms of accelerations,
speeds, and wind speeds measured with respect to the ground:
ma'(t)=—Fp,(1)=—($)C'(1)pSV'(1)> - 0 as t — oo. Because
V'— V.. #0,onewould have C'(f) — 0 ast — oo. Note that this
limit would be valid regardless of drifter shape and speed range, but
the specific manner in which this convergence occurs would be de-
pendent on drifter shape and speed. For example, the limit would
still apply for trajectories featuring drag reversal, but §(¢) and C'(¢)
would not be monotonically decreasing.

Assuming no explicit dependence on a(¢) and no drag direction
reversal permits the use of a very simple power law:

C@tyV?>=B|V =V, It )

where B and B are constants, to be later shown as dependent on
initial conditions. This same power law will also be assumed to
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hold in cases where F_ #0, inasmuch as a weak dependence
on the applied force has already been argued. In this case, the
value of C’ Vj,’.2 would converge to a nonzero constant, where
C'(t) > 2F.,/pS(V.. . — V;)*, with the values of constants B and
B being different from the freely drifting case, also as shown
later. Finally, note that the initial condition V'(0) =0 implies that
C’(0) = co. This is not a real problem because a calculation or mea-
surementof the drag force via Eq. (1) always involves first obtaining
the value of the product C’'V’2, which by definition always remains
finite. Thus, the drag functionindeed divergesat t = 0 in this special
case, but the drag force remains finite. This example points to the
important fact that the drag function does not always have the inter-
pretation normally attributed to the familiar drag coefficient. This is
particularly true in reference frames where V' (¢) is not equal to the

relative speed between the body and the incoming fluid.

Drag Force for Decelerating Motion in Static Fluids

The drag equation for a decelerating body identical in shape to
that of the drifter discussed earlier can be derived by using Eq. (7)
and the Galilean transformations (2-3). Looking at a wind drifter
moving to the right from a reference frame also moving to the right
butat wind speed V. = V.. | shows the drifter deceleratingin static
air and to the left, from an initial speed V; =V/ -V, to a final
speed V, =V, — V' . Here V; is the terminal speed generated by

the externalforce F  whenthe latteris balanced by drag. See Eq. (4)
with primed speeds and accelerations. Using Eq. (7) in concert with

the identity C(1)V (t)*> = C'(t)V'(t)? yields
Ct)=BIV@)F~? 3)

The values of B and f are now determined using Eq. (8) for both
initial and final values of the drag coefficient, namely, C(t =0) =
Cmt= BV ? and C(r = 00) = C}* = BV} >, This leads to

C@t)=C™|V@) V|2 ©)

where

init steady
ﬂ=2+—ﬂl(c /es™) (10)
(Vi / V1)

Note that V; > 0 and V; > V; to be consistent with the idea of a
body experiencing a deceleration. Also note that the value of the
exponent 8 depends on F, through Eq. (10) and that reference to
fluid density and viscosity is made implicitly through C™ and V.
In this model, C™* must be positive, otherwise C (¢) is negative, and
the drag force is reversed for the entire deceleration.

Applications and Predictions

A very important aspect of this model is that exponent 8 changes
also with the value of the drag function at the beginning of the
deceleration, that is, C™. At first this seems a major weakness be-
cause C™™* cannot always be measured simply in an experimental
setting 2° However, it is shown here that C™™* can actually be cal-
culated or measured in a few but nevertheless very important cases
that encompass a great number of nontrivial trajectories. It must be
emphasized again that the strong dependence on the value of C™™it
is not an artifact of the model. It is rather a fundamental charac-
teristic of decelerating body drag, where wake sections generated
before decelerationreinteract with the body soon after the onset of
deceleration.

Powered Vehicle with Parachute in Tow

Powered vehicles towing inflated parachutes or any other high-
drag devices have the capability of accelerating or cruising at con-
stant speed before #;. Consider, first, the case where the vehicle is
traveling at constant speed, namely, V(t <t,)=V; > V;, and at a
high enough Reynolds number so that C};™ is nearly speed inde-
pendent.The valueof C (t < t;) representingthe combined parachute
drag and vehicle drag should be close to its steady-state value,

namely, C™t ~ Cze“dy. According to Egs. (9) and (10), this means

that 8 ~ 2, to yield a constant value of the drag function and a drag
force depending on speed as Fp, o« V2,

Accelerating the vehicle before deceleration provides more inter-
esting scenarios and will give many differentdrag force evolutions.
This is demonstrated by using the accelerating disk drag evolution
equations recently derived in Ref. 44. These formulas are based on
the tow tank data of Iversen and Balent,?> who studied the motion of
submerged disks being pulled upward from rest, by a rope attached
to weights falling outside the tank. These investigators showed that
the resultingunsteady drag was strongly correlated with the acceler-
ation modulus §. Fitting their data with the appropriate logarithmic

law yielded (where C i;e“dy ~1.1)*:

CO* (1) ~ C;;eady ) (4.67)5(00'65’ 0<86<03 (11)

CUk (1) ~ [20- 8(1)1°4°, 03<8<10 12)

CUK (1) = C)*Y + 2K (v / SD)S (1), 5>10 (13)
Equations (11) and (12) were defined to have the same value and
the same slope at 6 =0.3. This particular value of the acceleration
modulus marks, in this particular experiment, a distinct but smooth
transition between the high and low § regimes.

Returning to the study of powered vehicles towing a
parachute/disk device, equations(4) and (11-13) can be now used to
calculate the value of C™ fora variety of accelerationprofiles gener-
ated by constanttraction or thruster forces. This is shown in Tables 1
and 2, which display the values of 8 — 2 and C™™* for differentinitial
conditions.In both accelerationand decelerationphases, the applied
external force is constant at all times except at ; (the beginning
of the deceleration phase), where possibly F, (f < ;) # Fo(t > ;).
Note that writing the initial value of the acceleration modulus as
8(t; —e)=4,,_. in Tables 1 and 2 reflects the fact that the value of §
justbeforethe beginningof the decelerationmay notbe the same just
after, given that our model may not yield a continuousa(t) att =t;.

Some interesting estimates using the results of Tables 1 and 2 can
be obtained by studyingthe example of an aircrafttowing a decelera-
tion parachute/disk where, before #;, the aircraft provides (constant)
thrustin much greater amounts than drag, thereby causing an accel-
eration. Engine power is then reduced at #; to begin the deceleration
phase. Assuming a modulus of §(¢; — €) ~ 0.5 just before the decel-
eration phase would give a maximum drag coefficient of C™* =2 .88
accordingto Table 2. Being dependenton initial and final speed, ex-
ponent 8 — 2 would then be approximatedby g —2 ~ 0.6, 1.39,and
5.33 for speed ratios of V;/ Vr ~ 5.0, 2.0, and 1.20, respectively.In

Table 1 Values of exponent 3 — 2 for different initial conditions®

Accelerating disk,

t<t Value
8065 fnd.67
0<46=<0.3 L ——
(Vi / V)
0.46 cten
b (205, - (64
03<5<10.0 [@o-0, ) " /c™]
(Vi / V)
bo| 1+ (2K vaid,, — o / SDCEY
[1+ o/ 03]
(Vi / V)

HFoxi (t <1i) # Fox (t > 1:).

Table2 Values of CMt for different initial conditions®

Accelerating disk, t <1; Value
. 0.65
0<6<03 Cleny 67"
0.46
0.3<5<10.0 (208, -.)
§>10.0 2K vgiskdy; — ¢/ SD

Fo(t < 1)) # Foxt (£ > 1;).
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otherwords, the drag force would vary as Fp o« V6, V332 and V733,
respectively. Note that the drag force would go as Fj, (¢) o< V2 in the
limit of very high V; / Vr ratios, which implies constant C () but one
with a value different from C};™” (provided that there is no drag
reversal).

Revisiting Freely Decelerating Body Dynamics

More interesting observations arise when revisiting the well-
known solution of the freely deceleratingbody in a static fluid where
Fex is very small. In regimes where V; > V; #0 and C;;e“dy isV
independent, one has 8 ~2 and

ma = —+CMSpV? (14)

a result that involves a constant drag coefficient in conformity with
current practice. What is new here is that C"* may not be equal
to the object’s steady drag coefficient, as sometimes assumed, but
determined by the motion’s history before deceleration. Indeed, in-
tegrating Eq. (14) yields

(15)

m

V[pSCmit oL
V() =V |14+ —E——t

where, as expected, the speed would converge to zero in a timescale
defined by the ratio Ty.q =2m/V;pSC™, as again determined by
the motion’s history. For example, assuming the object to have
the profile of an accelerating disk in the range of 0.3 <§ < 10 be-
fore deceleration would imply a deceleration timescale of Tyjeces =
2m/ V;pS[205(1; — £)]°*. Note also that Eq. (14) can be recast as
follows, using Eq. (6):

_ CinitDSp

6=6[
2m

(16)
This resultunderlinesthe little-known fact that the motion of a freely
decelerating object is a motion of constant acceleration modulus.
Like before, the value of 6 would be determined by the motion’s

history as illustrated by case of the accelerated disk just studied:
8; =[20-8(t; — £)1°(DSp/2m).

Comparison with Parachute Drop Data

The experimental validationof the ideas embodiedin Egs. (9) and
(10) is carried out using the data of parachute drops recently per-
formed by the authors. Like disks, parachutes display no boundary-
layer transitions because of airflow separation taking place at the
leading edge, that is, skirt of the canopy.*® Therefore, parachutes
can be considered bluff in the same way disks are. Also, the low-
speed character of the drops ensured that no drag reversal ever took
place, given that the recontact of the wake of slow parachutes re-
sults only in small deformation of the crown. (Drag reversal occurs
on parachutes and other flexible objects only after the entire body
has suffered major deformations.) In the following, the proposed
drag model is applied to the postinflation phase, where the canopy
decelerates to terminal speed while remaining fully inflated.

Experimental Conditions

The specifics of the tests that generated the data are discussed
in detail in Ref. 47. Briefly, these tests consisted in dropping low
fabric permeabilityround parachutesand cruciformparachutesfrom
aircraft flying at 1100 ft (335 m) mean sea level, at speeds ranging
between 90- and 110-kt indicated airspeed. The parachutes carried
suspended loads of 100 Ib (445 N). The drag force sustained by
the parachutes was measured using load cells inserted on each strap
linking the parachute to the payload. (Such straps are called risers.)
The parachute’s rate of descent after inflation was measured by an
electronicbarographalso located on the payload. These instruments
sent data to an onboard data acquisition system recording at a rate
of 500 Hz.

The parachutes tested were as follows: A 15-ft-diam, half-scale
model of the U.S. Air Force C-9 personnel emergency flat circu-
lar parachute and a 28-ft-diam (8.5-m) personnel emergency flat

circular parachute used by the U.S. Navy. References 46—49 give
ample details on their construction,including the type of cloth used.
These parachutes were found to have a 22 ft/s (6.7 m/s) and 16.6 ft/s
(5.0 m/s) terminal descent rate while carrying payloads of 100 and
1201b (444 .8 and 533.7 N), respectively. The other parachutestested
included a one-of-a-kind U.S. Army humanitarian cargo delivery
cruciform parachute of 3—1 aspect ratio, built out of two 9.2 by
24.0 ft (2.8 by 7.3 m) panels sewn into a cross and attached to 20
suspensionlines of length 19.7 ft (6.0 m). Also tested were (approx-
imately) half-scale models of this U.S. Army cruciform parachute,
built out of two 4.2 by 10.7 ft (1.3 by 3.3 m) panels and 20 suspen-
sion lines of length 12.2 and 17.0 ft (3.7 and 5.2 m). The terminal
speed of these cross chutes was measured at 17.8 and 32 ft/s (5.4
and 9.7 m/s) while carrying payloads of 100 and 128 1b (444.8 and
569 N), respectively.

Initial Conditions and Inflation Model

Testing Eqgs. (1), (9), and (10) during the postinflation phase re-
quires using initial postinflation deceleration data, that is, V; and
C"t_which in turns requires the knowledge of the parachute’s de-
scentrate and drag function obtained at the very end of the inflation
phase. This further requires the knowledge of the fall rate and drag
function of the parachute during the entire inflation phase. As dis-
cussed in Ref. 26, directly calculating the drag factor from test drop
datain general is particularly difficult given that the needed acceler-
ation, instantopened surface area, and velocity evolutionshave to be
measuredindependentlyand at a level of accuracy thatis beyond the
capabilities of our instrumentation package. Instead, we have used
a well-established simulation method to duplicate the time depen-
dence of the parachute riser force, drag area, and payload descent
rate during inflation **>° The formalism is based on the use of the
following equations of motion, written here to simulate the tangen-
tial deceleration and speed along the ballistic-like trajectory of a
payload-parachute system dropped from aircraft!>:

1

ma = —EpS(t)C(t)Vz + W coso (17)

S)C(t) = bit® + by (18)

de _ sin @ (19)
a8V

The constant by correspondsto the parachute’s drag area before in-
flation, that is, by = S(0)C (0). On the other hand, b, is expressed
in terms of by, and of the drag area at the end of the inflation
phase, namely, as b, = [(S(t}‘?ﬂ)C(tjPﬂ) - bo)]/(tji,‘?ﬂ)ﬁ. Test drops
performed over the past decades have shown the 7° law to work
very well with most inflating, low permeability, and low geometric
porosity parachutes such as cupped parachutes and low aspect ratio
cruciform parachutes *® Established from the direct measurementof
the ratio2(ma — W cos 9)/ p V2, this law takes into considerationall
effects relevant to the unsteady aerodynamics acting on an inflating
parachute, including coaccelerated air mass and the actual opening
and spreading of the canopy. Note that Eq. (17) neglects the elastic
response of the suspension lines and parachute cloth during infla-
tion, which for the light payload weight used here allowed the full
transmissionof the drag force to the load measuring instrumentation
in a timescale much shorter than the inflation time.

A comparison between the numerical solutions of Egs. (17-19)
and the measuredriserloadingduringinflationis shown in Figs. 3-6.
The computer simulations were carried out using the following
sources of data for input parameter determination: direct measure-
ments for m and p, video analysis for S(0) and tj,‘.‘ﬂ, load cell mea-
surements for Fy.,,(f), and rate of descent (terminal regime) for
C3*¥. Assuming C(0) ~ 1 to account for the drag of the payload
box at the onset of inflation, and using S(0) from video, gives the
value of by requiredby Eq. (18).On the otherhand, the determination
of by required knowing not only the value of S(#{"") and 7" (ob-
tained from video) but also the value of the product S(t}‘?ﬂ)C(t}‘?ﬂ).
This number, as well as the value of V (0), was obtained by repeated
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o NWV08
9 Half-scale Cruciform
W=100 Ibs
8 v0=-67 fps
7 inflation ends TF=0.3 sec
1 |, Sflat=85.4 ft"2
6 Cds0=8 ftr2
] CdSF=300 ft*2
5 | solid line - simulation
s jagged line - test drop data
[P
3
24
14
0
-1
4 4.5 5 55 6 6.5 7

time(sec)

Fig. 3 Total parachute riser force per unit payload weight vs time.

ik NWvV17
Half-scale C9 Round
12 W=100 Ibs
v0=-67 fps
10 4 inflation ends ;::?:; ::; fn2
CdS0=8 ft~2
8 CdSF=650 ft*2
solid line -simulation
E 6 jagged line - test drop data
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Fig. 4 Total parachute riser force per unit payload weight vs time.

45

Nwv107

Full-scale Navy 28' Round
W=110 lbs

v0=-95 fps

351 TF=1.5 sec

Sflat=615.8 ftA2

CdS0=4 ftA2

CdSF=600 ft"2

solid line - simulations
jagged line - test drop data

inflation ends

5 7 9 11 13 15
time (sec)

Fig. 5 Total parachute riser force per unit payload weight vs time.

simulations of Egs. (17-19), until the best fit of the measured riser
force was achieved, as shown in Fig. 7. (Some very good fits were
achieved.) The values of all parameterused are shown in the figures.

Postinflation Deceleration and Drag Model Validation

During the postinflation phase, the equation of motion along the
trajectory tangent evolves into the following form, which directly
follows from Egs. (1), (9), and (10):

ma = —%,oSCi““(V/V[)ﬁ’2\/2 — PVehute @ + W cos O (20)

Here the time dependence of the parabolic trajectory angle is still,
given by Eq. (19). Note that the value of 8, V;, and C™™ required
for the solution of Eq. (19) and (20) are completely determined by
the ending conditions of the inflation phase simulation. No further

NWV104

Fuli-scale Cruciform
W=120 bs

v0=-120 fps

TF=1.7 sec

Sflat=304.2 f{*2

CdS0=4 ft"2

CdSF=325 ft*2

solid linc - simulation
jagged line - test drop data

inflation ends

Fiw

M\N‘-

5 7 9 11 13 15

time (sec)

Fig. 6 Total parachute riser force per unit payload weight vs time.

Squares: simulation with V(0) =95 fps, t_infl = 1.5 sec, 8_f =325 sqf
Selid: simulation with V(0) = 120 fps, t_infl = 1.7 sec, 8_f = 325 sqf
Diamonds: simulation with V(0) =95 fps, t_infl = 1.5 sec, S_f = 450sqf

Fiw

5 55 6 6.5 7 75 8

time (sec)

Fig. 7 Riser loads vs time; same drop and parachute construction data
as in Fig. 6.

tuning of the drag model is actually possible. Figure 7 shows that the
model performs well when the inflation simulation performs well
and performs badly when the former performs badly. The compari-
son between theory and experiment is also shown in Figs. 3—6.

Comparison with Experiment

Figures 3—6 show the comparison between the calculated and ex-
perimental riser force, during and after inflation. In agreement with
most unreefed parachutes studies of the past, *¢ the computer simu-
lations show the moment of maximum opening force to occur before
the full spreading of the parachute. When the small-amplitude fluc-
tuationsin measured drag caused by the elastic nature of the suspen-
sion lines and fabric flutter (and possibly by local wake recontactef-
fects) are discarded, the agreement between theory and experiment
is good for both cruciform parachute sizes and for the half-scale
round parachute (C-9 parachute). For these cases, our deceleration
model gives a good estimate of the decelerationrates after the end
of inflation (very high rates) and just before settling into terminal
velocity (very low rates). According to Eq. (9), suchrates should be
proportionalto V# 1. On the other hand, the match between theory
and experiment for the full-scale Navy round parachute example
could be best characterized as “fair,” for reasons to be discussed
further.

Figures 8—11 show the corresponding time evolution of the cal-
culated drag coefficient. Figure 10 in particular shows the effect
of changing the values of V;, and C (t}‘?ﬂ)S 7. Quite remarkably, the
half-scale parachutes feature higher values and rates than the full-
scale parachutes. This is explained by that both sizes of parachutes
were deployed at the same speed and altitude, thereby causing the
inflation time scale to become much smaller for the half-scale than
for the full-scale parachutes, that is, twice as fast for the half-scale
parachutes *® Not having the time to decelerate substantially causes



376 POTVIN, PEEK, AND BROCATO

Table 3 Calculated deceleration properties of the parachutes studied in the test drops®

Half-scale cross

Half-scale C-9

Full-scale cross Full-scale U.S. Navy

Property D=10.7 ft D=15.0ft D=24.0ft D =28.0ft
Ciniy R 325 3.12 1.06 ~1.00
Vi/Vr 1.43 1.33 1.63 1.52and 1.41
B 5.29 5.98 2.12 1.95and 2.13
§(t) 0.64 2.31 1.24 3.17
“Input data shown in Figs. 3-6.
o NWV08 Cd NWV104
Half-scale Cruciform Full-scale Cruciform
W=100 Ibs 0.87 4 W=120 Ibs
254 v0=-67 fps v0=-120 fps
TF=0.3 sec TF=1.7 sec
Sflat=85.4 ftA2 0.86 { cszzasto:—sﬁifzn 2
21 e CdSF=325 fir2
CdSF=300 ft*2 0.85 |
1.5 4
0.84
L 0.83 1
0.5 4 0.82
0 ‘ ' ' ‘ o 0 2 :4 f; z; 10
0 2 4 6 8 10
time (sec)

time (sec)

Fig. 8 Calculated drag coefficient vs time during the postinflation
deceleration phase; same input parameters as in Fig. 3.

Cd NWvV17
Half-scale C9 Round
3.5 W=100 |bs
v0=-67 fps
3 | TF=0.3 sec
Sflat=153.9 ftr2
CdS0=8 ftr2
25 CdSF=650 ft*2
2
1.5
1
0.5

0 T T T T
] 2 4 6

time (scc)

Fig. 9 Calculated drag coefficient vs time during the postinflation de-
celeration phase; same input parameters as in Fig. 4.

Cd

NwWV107
0.63 Full-scale Navy 28' Round
W=110 lbs
0.625 V(0) = -95 fps (lower) and -90 sqf (upper)
TF=1.5 sec
062 1 Sflat=615.8 ft"2
4 CdS0=4 ftr2
0615 CdSf = 600 sqf (lower) and 625 sqf (upper)
0.61 4
0.605 1
0.6
0.595
0.59 1
0.585 1
0.58 T T T T T
0 2 4 6 8 10 12
time(sec)

Fig. 10 Calculated drag coefficient vs time during the postinflation
deceleration phase; same input parameters as in Fig. 5.

Fig. 11 Calculated drag coefficient vs time during the postinflation
deceleration phase; same input parameters as in Fig. 6.

the smaller chutes to open at higher V (), leading to quicker open-
ings and higher forces than the larger chutes. All of this would con-
tribute to drag coefficients that would be larger for the former than
for the latter. Table 3 shows the calculated values of C"it/C3™
and B for the four parachutes tested. According to Eq. (10), the
drag force would vary as Fp o« V3%, V398 V212 and V290 for
the half-scale cruciform parachute, half-scale C-9 parachute, full-
scale cruciform parachute, and the full-scale U.S. Navy round
parachute, respectively.

With regard to the trajectory requirements discussed earlier,
Table 3 also shows the values of the ratio V;/ V as calculated from
the numerical solutions of the model. Averaged at V;/V,~1.5,
these values fall well below the limit of V;/V,; <4 set forth
by Strickland and Macha to avoid substantial canopy deforma-
tion/deflation from wake recontact?® Table 3 also shows the sim-
ulated values of the deceleration modulus at the beginning of the
postinflation phase, pointing to all drops being in the desired range
of i ~ 10°, namely, i, <3.0. In that respect, looking again at
Figs. 3—-6 shows that the agreement with experiment is actually bet-
ter for those cases where 8;,; ~ 1 or less.

Conclusions

A new model of the drag force generated by a decelerating bluff
body was derived and shown to compare favorably with parachute
deceleration data collected during recent test drops. Its most inter-
esting features are as follows: 1) a clear dependence on the history
of the trajectory before deceleration;a nontrivial speed-dependence
of the drag force, translating into power laws that are much dif-
ferent from the familiar V2 power law; 3) an illustration of the
deep connection between decelerating parachute aerodynamicsand
acceleratingwind drifter aerodynamics;and 4) a great number of in-
teresting applications, including the motions of inflated parachutes
and the motions of disk-like shapes that accelerate and decelerate
sequentially.

Further comparisonwith experimentaldatais of coursenecessary.
Most useful would be the data of a tow-tank experiment similar to
that of Higuchi et al.>* and Balligand and Higuchi,** but dedicated
to the study of constant decelerating motions without drag direc-
tion reversal (if such a correlationis possible). It would help clarify
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whether Eqgs. (9) and (10) can be used for decelerationsthat yield an
increasing and discontinuous§ (#). Comparison with computational
fluid dynamics-type computer simulations such as Strickland’s*!
should be entertained as well. Combining the predictions of the
model with the results of the latter would be very useful in as-
sessing quantitatively the effects of various initial motions before
deceleration.
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