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New Model of Decelerating Bluff-Body Drag
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A new model of the drag force generated by a freely decelerating bluff body is presented. The model is based,
mainly, on the premise that the wake of an object accelerating downwind in a moving � uid is identical to that of the
same object decelerating in the � uid at rest. After arguing for the drag of a wind drifter to depend only on a power
function of its speed relative to the wind, a Galilean transformation is used to provide a formula for decelerating
body drag of the form FD » V¯ . The value of exponent ¯ is dependent on the amount of external force applied
to the body, as well as on its initial and � nal drag coef� cients and its initial speed. By implication, this exponent
depends on the speci� c history of the motion. Applications to powered and unpowered vehicles trailing a parachute
or any other high-drag devices are presented and discussed. The model is also shown to compare favorably with
parachute-test drop data.

Nomenclature
a.t/ = instant acceleration or deceleration
b0 = initial value of the drag area used

in Eq. (18)
b1 = time-normalized drag area difference used

in Eq. (18)
Cdisk

D = drag coef� cient of a disk accelerating
in a static � uid

C steady
D = drag coef� cient in steady motion

C init = initial value of the drag function
C.t/ = instant drag function; de� ned by Eq. (1)
D = characteristicdiameter
FD = force of drag
Fext = external force
Ftot = net force applied on a moving body
K = constant used in Eq. (13)
S = reference surface area
Tdecel = deceleration timescale
t in�

f = ending time of the parachute in� ation phase
V f = speed at the end of an unsteady motion
Vi = speed at the beginning of an unsteady motion
Vref = speed of a particular reference frame
Vrel = speed of a moving object relative

to the incoming air/� uid
VT = terminal speed, which arises from FD

balancing Fext [Eq. (4)]
V .t/ = instant speed of the body
¯ = exponent de� ned in Eq. (7)
± = acceleration modulus; de� ned by Eq. (6)
±i = initial acceleration modulus
" = time increment
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ºchute = air volume contained inside a parachute
and moving along with the parachute

ºdisk = volume of a sphere featuring the same
diameter as the disk located at its equator

½ = air density

Superscript

0 = quantities measured in an alternate
Galilean reference frame

Introduction

I NFLATED parachutes and other high-drag objects often travel
along trajectories that are far from being characterizedby a con-

stant velocityand constantdrag coef� cient.1;2 During � ightor cruise
they may undergo unsteady motions such as during a turn maneu-
ver, or during oscillationscaused by accumulatedexcess air spilling
from alternate sides.3¡16 Time-dependent speeds are of course seen
duringparachutein� ationandalso rightafter in� ationwhen the fully
in� atedcanopythendeceleratesto the terminalvelocityregime.17¡20

This means that, even at constant surface area, these objects may
feature a ratio FD.t/=V .t/2 that is not only time dependent but also
motion- and trajectory-dependent. In other words, de� ning the drag
force of a moving body of constant surface area S through21

FD.t/ D 1
2
C.t/½Sv.t/2 (1)

yields a time-dependent C.t/ (or drag function). This force
coef� cient is calculated solely from the independentmeasurements
of S; FD.t/, and V .t/, the latter usually being the speed of the body
relative to the air/� uid at in� nity. For example, Iversen and Balent
report a drag functionchangingin the rangeof 0 < C.t/ < 10 in their
tow tank study of accelerating disks.22 Higuchi et al.,23 Balligand
and Higuchi,24;25 and Strickland and Macha26 also showed C.t/ to
change by similar amounts for disks decelerating in a tow tank23¡25

and for freely decelerating high-speed porous parachutes.26 Addi-
tionally, these investigators found that in the right conditions the
drag of decelerating objects may reverse directions as a result of
violent wake recontact, thus, becoming a pushing force in the man-
ner shown in Fig. 1 and yielding ¡5 < C.t/ < C4 (Refs. 23–25). Of
course, the drag function is always equal to the value of the familiar
drag coef� cient, that is, C.t/ D cons D C steady

D , when V .t/ is constant
for long periods of time.
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Fig. 1 Schematics of the speeds and drag functions characterizing
disks moving in tow tanks.23¡25

The mechanisms for such time dependence are many, as dis-
cussed, for example, by Sarpkaya and Isaacson1 and by Sarpkaya.2

Accelerated and decelerated motions imply a host of new phe-
nomena caused by a changing Reynolds number, including time-
dependent vortex shedding intervals and locations, hard to predict
boundary-layertransitions,laminar-to-turbulent� ow transitionsand
wake recontact.All of this has been documentedby several tow tank
studies of cylinders, plates and disks at low and medium Reynolds
numbers (see Refs. 27–35) and in parachute test drops at high
Reynolds numbers (see Refs. 17 and 26). Most important, such
complexity makes it is very dif� cult to calculate from scratch the
explicit time evolution of the drag function C.t/, given that it is
not only speci� c to the trajectory studied and forces applied, but
also to the history of the motion before being accelerated or de-
celerated. This is particularly true for decelerating motions, where
fast-moving sections of wakes created before deceleration may be
interacting again with the (now) slow-moving body moments after
the onset of deceleration.

Several theoretical descriptions of decelerating body drag have
been discussed in the past. These includes calculations using the
concept of apparent mass,1¡20;36;37 the slug wake model of Spahr
and Wolf,38 the � uid–parachute interaction model of Oler,39 and a
generalization of Oler’s model to include apparent mass by Yavuz
and Oler.40 Of note are also the numerical simulations of deceler-
ating disks by Strickland41 and their comparison with experimental
data by Higuchi et al.,23 Balligand and Higuchi,24;25 and Higuchi
and Strickland.42 In the following we present an alternate model of
deceleratingbluff-bodydrag, which is not as general as Strickland’s
vortex computer simulations,41 but is more reliable than the many
models that use the added mass concept when separated � ows are
present.The model is also much simpler and is based on the follow-
ing premises: � rst, that the wake of an object acceleratingdownwind
in a moving � uid is identical to that of the same object decelerating
in the � uid being at rest; second, that the drag force dependsweakly

on the instant deceleration a.t/ if the motion is characterized by a
“low enough” acceleration modulus; and � nally, that the drag force
generated by a bluff body drifting freely with the wind at ground
speed V .t/ and accelerating to the speed of the wind (Vwind) goes
as FD » .Vwind ¡ V /¯ . Using Galilean transformations to translate
this result into deceleration drag provides the end result. Several
trajectories can be studied with this formula, including the motion
of a bluff body decelerating after moving in a state of acceleration,
deceleration,or constant speed.

Equivalent Wakes for Decelerating
and Accelerating Motions

Most relevant to the proposed model is the Galilean equivalence
de� ned by a body decelerating in still air and the same body ac-
celeratingwhile drifting with moving air. Consider an object freely
decelerating in static air under the in� uence of drag and a given
external force, from an initial speed Vi to a � nal speed V f . When
observed from a reference frame moving along at a constant speed
Vref > Vi , this same object now appears to accelerate along with the
air, which is now seen moving at constant speed of Vwind D ¡Vref.
The acceleration would be seen as generating speed changes from
V 0

i D ¡Vwind C Vi to V 0
f D ¡Vwind C V f . Of course, the wake gener-

ated by the object must be fundamentally the same despite having
differentmotions in each reference frame. This implies that an aero-
naut in a balloon acceleratingfrom a ground speed of V 0

i D 0 ft/s to
V 0

f D Vwind D 10 ft/s while drifting in a 10 ft/s wind would experi-
ence a wake identical to that of the same balloon generated while
decelerating in still air from Vi D ¡10 ft/s to V f D 0 ft/s. Such a
similarity can be mathematically expressed via the use of Galilean
transformations.43 These relate the coordinates,x , y, z, and t, speed
V , and acceleration a of an object moving in one reference frame
to the corresponding set of coordinates and variables of the same
object seen from another reference frame moving at constant veloc-
ity Vref . More speci� cally, these transformations are formulated as
follows for a reference frame moving in the x direction:

x 0 D x ¡ Vref t; y 0 D y; z0 D z; t 0 D t

V 0
x D Vx ¡ Vref; a0

x D ax (2)

Note that by convention, all unprinted reference frames will corre-
spond to frames where the � uid at in� nity appears at rest, that is,
there isnowind.Theseequationsimply that thevelocitycomponents
in the y and z directions, as well as the acceleration components in
all three directions, remain invariant from one Galilean frame to
another. Moreover, the acceleration being invariant means that the
total force acting on the body is also invariant, as well as any in-
dividual force playing the role of the net force or combining with
others into a net force. For example, in the case of a drag force and
external force causing a one-dimensionalmotion,

F 0
tot D Ftot; F 0

D D FD; F 0
ext D Fext (3)

where

ma.t/ D Ftot D ¡FD C Fext (4)

Equations (1–4) can be used to write down the transformation
properties of the drag function C.t/, to yield

C 0.t 0/V 0.t 0/2 D C.t/V .t/2 (5)

This result means that the product CV 2 is a Galilean invariant. It
also means that, when the unprimed reference frame is one where
the � uid is at rest, the drag factor C 0.t/ measured in the primed
frame corresponds to a speed V 0.t/ that is no longer equal to the
speed of the moving body relative to the incoming air.

In discussions to follow, frequent use is made of the acceleration
modulus, which is de� ned here in terms of the airspeed relative to
the wake-producingobject:

± D Djaj
¯

.Vrel/
2 (6)
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Such de� nition ensures that it coincides with the de� nition1;22

that is used in cases where the � uid is at rest. However, Eq. (6)
also ensures that it is a Galilean invariant given that ±0 D
Dja 0j=.V 0

rel/
2 D Djaj=.Vrel/

2 D ±.

Trajectory Restrictions and Basic Assumptions
The proposedmodel is expected to be valid only within a speci� c

set of initial and � nal conditions,as well as with speci� c trajectories
and driving external forces. Fundamentally, one should always ex-
pect C.t/ to be very sensitive to initial conditionsgiven that a decel-
erating body generatesa wake that not only piles up on the backside
of the body but also on itself. This means that wake sections pro-
ducedat earlier times, in particularbeforedeceleration,may strongly
interact with the wake sections produced during deceleration.38

The model is de� ned for applications to bluff objects such as
parachutes, which are decelerating from a high initial speed and
high Reynolds number regime, that is, Re » 105–107, to a termi-
nal velocity regime also characterizedby a high Reynolds number.
Moreover, the following conditions are assumed to hold.

1) External forces exhibit an asymptotic behavior of the type
Fext ! Aa.t/ C B as t ! 1, where A and B are constants.

2) A bodygeneratesa turbulentwake, but one that is not necessar-
ily fully developed,with the largest eddies being somewhat smaller
than the size of the object producing the wake.

3) An acceleration modulus does not increase with time, but is
initially nearly constant and later converges to zero as t ! 1, as
shown by the dashed curve of Fig. 2.

4)A valueof the ratioof initial–to–� nal speeds(or Vi =V f ) is small
enough to preclude the kind of wake recontact and drag reversal
described in Refs. 23–26. For the types of geometrically porous
parachute studiedby Stricklandand Macha,26 this would amount to
Vi =V f < 4.

Requirement1 ensures that the decelerationpro� le yields a speed
convergingto a constantvalueas the resultof the appliedforcescom-
bining into a null net force.Requirement3 adds more restrictionson
the type of trajectory, in particular eliminating from consideration
most of the data generated in past tow tank experiments.23¡25;35 In
generalsuch experimentsusea constantdeceleration,which leads to
an increasingaccelerationmodulus, in contrast to the decreasingac-
celerationmodulusencounteredwith freelydeceleratingparachutes
or driftingballoons(Fig. 2).Typically,andat similar initial decelera-
tions andspeeds,freelydeceleratingobjectsmove faster than objects
being towed at a � xed deceleration, thus generating less of a wake
pileup.Thus,vastlydifferentwakesanddragfunctionsshouldbe ex-
pected in both cases. Requirement 4 also eliminates all trajectories,
freely decelerating26 or decelerating in tow tanks,23¡25 that involve
the reversal of the direction of the drag force41;42 [where C.t/ < 0].
This requirement arises from the mathematics of the model being
too simplistic to handle correctly the effects of drag direction re-
versal [see subsequent Eq. (7)]. Finally, requirement 2 ensures that
the body is moving at high values of Reynolds number where � ow
separation along its sides has already occurred. The drag generated
under this requirement cannot always be described by formalisms

Fig. 2 Acceleration modulus comparison between motions studied in
tow tank experiments and decelerations of freely moving vehicles.

based on the apparentmass concept.3¡20;36;37 A � nal requirement is
as follows.

5) The value of ±.t/ should not exceed an upper bound approxi-
mating 100.

This requirement is made to minimize (or eliminate) the explicit
dependence of the drag function C.t/ on the deceleration a.t/, a
most drastic approximation.This idea can be motivated by the pil-
ing up of the wake on the decelerating body and on itself, which
leads to a partial washing-out (or averaging out) of the acceleration
history contained in various portions of the wake. Such erasing ac-
tionshouldbe furtherenhancedby requirement5, given that thehigh
Reynoldsnumber� uid � ow arounda deceleratingdisk is made up of
ideal or potential � ows enveloping the disk and its turbulent wake.
Relative to the disk, such � ows would be decelerating in a manner
primarily determined by the decelerationevolution of the incoming
� ow, that is, a.t/. On the other hand, and at low enough ±.t/, the
rates of speeds of the � uid particles moving inside the near wake
should be determined not by the instant value of a.t/, but rather by
the high shear forces that are prevalentwhen the disk is movingnear
constant speeds. In fact, the accelerations of the near wake’s � uid
particles should be much greater than a.t/ in this regime.44 Thus,
having a large portion of the wake being weakly dependent on the
instant value of a.t/ should lead to a drag function that is likewise
dependent.A calculation using Prandtl’s mixing length theory (see
Ref. 45) can be used to estimate the required low value of the accel-
eration modulus.44 Following the argument by Potvin44 applied to
the wakes of acceleratingdisks, one arrivesat a bound of ±.t/ < 100.
Note � nally that assuming the drag function to depend weakly a.t/
also entails C.t/ being weakly dependent on the amount of exter-
nal forces applied. This should be so as long as these forces do not
directly perturb the � ow about the body in any way other than by
imparting different accelerations. In this respect, forces provided
by thin ropes aligned with the incoming � ow would satisfy this re-
quirement, but propellersattached near the drag-producingfeatures
of a body would not.

From Wind Drifter Drag to Decelerating
Parachute Drag

Drag Force of Wind Drifters
The equivalence between the wakes of wind drifters and of de-

celerating bodies in a static � uid will provide the starting point for
the derivationof the model. First acceleratingwind drifters sustain-
ing no external force other than drag, that is, F 0

ext D 0 in Eq. (4) are
considered. The corresponding decelerator example would be that
of a parachute (of the same shape) decelerating an unpowered ve-
hicle/payload along the horizontal. Under such conditions, a wind
drifter would settle in time into a constant speed that is equal to
the speed of the wind. When a start from rest is considered, the
drifter would start by accelerating with respect to the ground, all
of the while generating a drag force decreasing in magnitude be-
cause of its decreasing speed relative to the wind. This process
would continue until the drifter’s ground speed becomes identical
to that of the wind. At this point, the net force applied becomes
zero, and the drifter proceeds at constant speed according to New-
ton’s � rst law of motion. Thus, one obtains the following evolution,
using Eq. (1) and (4), here expressed in terms of accelerations,
speeds, and wind speeds measured with respect to the ground:
ma 0.t/ D ¡F 0

D.t/ ´ ¡. 1
2 /C 0.t/½SV 0.t/2 ! 0 as t ! 1. Because

V 0 ! V 0
wind 6D 0, one would haveC 0.t/ ! 0 as t ! 1. Note that this

limit would be valid regardlessof drifter shape and speed range, but
the speci� c manner in which this convergenceoccurs would be de-
pendent on drifter shape and speed. For example, the limit would
still apply for trajectoriesfeaturing drag reversal, but ±.t/ and C 0.t/
would not be monotonically decreasing.

Assuming no explicit dependence on a.t/ and no drag direction
reversal permits the use of a very simple power law:

C.t/0V 02 D BjV 0 ¡ V 0
windj¯ (7)

where B and ¯ are constants, to be later shown as dependent on
initial conditions. This same power law will also be assumed to
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hold in cases where F 0
ext 6D 0, inasmuch as a weak dependence

on the applied force has already been argued. In this case, the
value of C 0V 02

f would converge to a nonzero constant, where
C 0.t/ ! 2F 0

ext=½S(V 0
wind ¡ V 0

T )2 , with the values of constants B and
¯ being different from the freely drifting case, also as shown
later. Finally, note that the initial condition V 0.0/ D 0 implies that
C 0.0/ D 1. This is not a real problem because a calculationor mea-
surementof the drag forcevia Eq. (1) always involves � rst obtaining
the value of the product C 0V 02, which by de� nition always remains
� nite. Thus, the drag functionindeed divergesat t D 0 in this special
case, but the drag force remains � nite. This example points to the
important fact that the drag function does not always have the inter-
pretation normally attributed to the familiar drag coef� cient. This is
particularly true in reference frames where V 0.t/ is not equal to the
relative speed between the body and the incoming � uid.

Drag Force for Decelerating Motion in Static Fluids
The drag equation for a decelerating body identical in shape to

that of the drifter discussed earlier can be derived by using Eq. (7)
and the Galilean transformations (2–3). Looking at a wind drifter
moving to the right from a reference frame also moving to the right
but at wind speed V 0

ref D V 0
wind shows the drifter deceleratingin static

air and to the left, from an initial speed Vi D V 0
i ¡ V 0

ref to a � nal
speed V f D V 0

T ¡ V 0
ref. Here V 0

T is the terminal speed generated by
the externalforce F 0

ext when the latter is balancedby drag.See Eq. (4)
with primed speeds and accelerations.Using Eq. (7) in concertwith
the identity C.t/V .t/2 D C 0.t/V 0.t/2 yields

C.t/ D BjV .t/j¯ ¡ 2 (8)

The values of B and ¯ are now determined using Eq. (8) for both
initial and � nal values of the drag coef� cient, namely, C.t D 0/ ´
C init D BV ¯ ¡ 2

i and C.t D 1/ D C steady
D D BV ¯ ¡ 2

T . This leads to

C.t/ D C initjV .t/=Vi j¯ ¡ 2 (9)

where

¯ D 2 C

¡
C init

¯
C steady

D

¢

.Vi =VT /
(10)

Note that Vi > 0 and Vi > VT to be consistent with the idea of a
body experiencing a deceleration. Also note that the value of the
exponent ¯ depends on Fext through Eq. (10) and that reference to
� uid density and viscosity is made implicitly through C init and VT .
In this model, C init must be positive,otherwiseC .t/ is negative, and
the drag force is reversed for the entire deceleration.

Applications and Predictions
A very important aspect of this model is that exponent ¯ changes

also with the value of the drag function at the beginning of the
deceleration, that is, C init . At � rst this seems a major weakness be-
cause C init cannot always be measured simply in an experimental
setting.26 However, it is shown here that C init can actually be cal-
culated or measured in a few but nevertheless very important cases
that encompass a great number of nontrivial trajectories. It must be
emphasized again that the strong dependence on the value of C init

is not an artifact of the model. It is rather a fundamental charac-
teristic of decelerating body drag, where wake sections generated
before deceleration reinteract with the body soon after the onset of
deceleration.

Powered Vehicle with Parachute in Tow
Powered vehicles towing in� ated parachutes or any other high-

drag devices have the capability of accelerating or cruising at con-
stant speed before ti . Consider, � rst, the case where the vehicle is
traveling at constant speed, namely, V (t · ti ) D Vi > VT , and at a
high enough Reynolds number so that C steady

D is nearly speed inde-
pendent.The valueofC.t < ti / representingthe combinedparachute
drag and vehicle drag should be close to its steady-state value,
namely, C init » C steady

D . According to Eqs. (9) and (10), this means

that ¯ » 2, to yield a constant value of the drag function and a drag
force depending on speed as FD / V 2.

Acceleratingthe vehicle before decelerationprovidesmore inter-
esting scenarios and will give many different drag force evolutions.
This is demonstrated by using the accelerating disk drag evolution
equations recently derived in Ref. 44. These formulas are based on
the tow tank data of Iversen and Balent,22 who studied the motion of
submerged disks being pulled upward from rest, by a rope attached
to weights falling outside the tank. These investigatorsshowed that
the resultingunsteadydrag was stronglycorrelatedwith the acceler-
ation modulus ±. Fitting their data with the appropriate logarithmic
law yielded (where C steady

D » 1:1)44:

Cdisk.t/ ¼ C steady
D ¢ .4:67/±.t/0:65

; 0 < ± < 0:3 (11)

Cdisk.t/ ¼ [20 ¢ ±.t/]0:46; 0:3 < ± < 10 (12)

Cdisk.t/ D C steady
D C 2K .ºdisk=SD/±.t/; ± À 10 (13)

Equations (11) and (12) were de� ned to have the same value and
the same slope at ± D 0:3. This particular value of the acceleration
modulus marks, in this particular experiment, a distinct but smooth
transition between the high and low ± regimes.

Returning to the study of powered vehicles towing a
parachute/disk device,equations(4) and (11–13) can be now used to
calculatethevalueofC init for a varietyof accelerationpro� lesgener-
ated by constant tractionor thruster forces.This is shown in Tables1
and 2, which display the values of ¯ ¡ 2 and C init for different initial
conditions.In both accelerationand decelerationphases, the applied
external force is constant at all times except at ti (the beginning
of the decelerationphase), where possibly Fext(t < ti ) 6D Fext(t ¸ ti ).
Note that writing the initial value of the acceleration modulus as
±(ti ¡ ") ´ ±ti ¡ " in Tables 1 and 2 re� ects the fact that the value of ±
justbeforethe beginningof thedecelerationmay notbe the same just
after, given that our model may not yield a continuousa.t/ at t D ti .

Some interestingestimates using the results of Tables 1 and 2 can
beobtainedby studyingtheexampleof an aircrafttowinga decelera-
tion parachute/disk where, before ti , the aircraft provides (constant)
thrust in much greater amounts than drag, therebycausingan accel-
eration.Engine power is then reduced at ti to begin the deceleration
phase. Assuming a modulus of ±.ti ¡ ") » 0.5 just before the decel-
erationphasewould give a maximum drag coef� cient of C init D 2:88
accordingto Table 2. Being dependenton initial and � nal speed, ex-
ponent ¯ ¡ 2 would then be approximatedby ¯ ¡ 2 » 0:6, 1.39, and
5.33 for speed ratios of Vi =VT » 5:0; 2:0, and 1.20, respectively. In

Table 1 Values of exponent ¯ ¡ 2 for different initial conditionsa

Accelerating disk,
t < ti Value

0 · ± · 0:3
±0:65

ti ¡ " 4:67

.Vi =VT /

0:3 · ± · 10:0

£¡
20 ¢ ±ti ¡ "

¢0:46¯
C steady

D

¤

.Vi =VT /

± À 10:0

£
1 C

¡
2Kºdisk±ti ¡ "

¯
SDC steady

D

¢¤

.Vi =VT /

a Fext.t < ti / 6D Fext.t > ti /.

Table 2 Values of Cinit for different initial conditionsa

Accelerating disk, t < ti Value

0 · ± · 0:3 C steady
D 4:67

±0:65
ti ¡ "

0:3 · ± · 10:0
¡
20 ¢ ±ti ¡ "

¢0:46

± À 10:0 2Kºdisk±ti ¡ "=SD

a Fext.t < ti / 6D Fext.t > ti /.
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otherwords, the dragforcewould varyas FD / V 2:6, V 3:39 and V 7:33,
respectively.Note that the drag force would go as FD.t/ / V 2 in the
limit of very high Vi =VT ratios,which implies constantC.t/ but one
with a value different from C steady

D (provided that there is no drag
reversal).

Revisiting Freely Decelerating Body Dynamics
More interesting observations arise when revisiting the well-

known solutionof the freelydeceleratingbody in a static� uid where
Fext is very small. In regimes where Vi À VT 6D 0 and C steady

D is V
independent, one has ¯ » 2 and

ma D ¡ 1
2
C initS½V 2 (14)

a result that involves a constant drag coef� cient in conformity with
current practice. What is new here is that C init may not be equal
to the object’s steady drag coef� cient, as sometimes assumed, but
determined by the motion’s history before deceleration. Indeed, in-
tegrating Eq. (14) yields

V .t/ D Vi

µ
1 C

Vi ½SC init

2m
t

¶¡1

(15)

where, as expected, the speed would converge to zero in a timescale
de� ned by the ratio Tdecel D 2m=Vi ½SC init , as again determined by
the motion’s history. For example, assuming the object to have
the pro� le of an accelerating disk in the range of 0:3 < ± < 10 be-
fore deceleration would imply a deceleration timescale of Tdecel D
2m=Vi ½S[20±.ti ¡ "/]0:46 . Note also that Eq. (14) can be recast as
follows, using Eq. (6):

± D ±i D
C init DS½

2m
(16)

This result underlinesthe little-knownfact that the motionof a freely
decelerating object is a motion of constant acceleration modulus.
Like before, the value of ± would be determined by the motion’s
history as illustrated by case of the accelerated disk just studied:
±i D [20 ¢ ±.ti ¡ "/]0:46.DS½=2m/.

Comparison with Parachute Drop Data
The experimentalvalidationof the ideas embodiedin Eqs. (9) and

(10) is carried out using the data of parachute drops recently per-
formed by the authors.Like disks, parachutesdisplay no boundary-
layer transitions because of air� ow separation taking place at the
leading edge, that is, skirt of the canopy.46 Therefore, parachutes
can be considered bluff in the same way disks are. Also, the low-
speed character of the drops ensured that no drag reversal ever took
place, given that the recontact of the wake of slow parachutes re-
sults only in small deformationof the crown. (Drag reversal occurs
on parachutes and other � exible objects only after the entire body
has suffered major deformations.) In the following, the proposed
drag model is applied to the postin� ation phase, where the canopy
decelerates to terminal speed while remaining fully in� ated.

Experimental Conditions
The speci� cs of the tests that generated the data are discussed

in detail in Ref. 47. Brie� y, these tests consisted in dropping low
fabricpermeabilityroundparachutesandcruciformparachutesfrom
aircraft � ying at 1100 ft (335 m) mean sea level, at speeds ranging
between 90- and 110-kt indicated airspeed. The parachutes carried
suspended loads of 100 lb (445 N). The drag force sustained by
the parachuteswas measured using load cells insertedon each strap
linking the parachute to the payload. (Such straps are called risers.)
The parachute’s rate of descent after in� ation was measured by an
electronicbarographalso locatedon the payload.These instruments
sent data to an onboard data acquisition system recording at a rate
of 500 Hz.

The parachutes tested were as follows: A 15-ft-diam, half-scale
model of the U.S. Air Force C-9 personnel emergency � at circu-
lar parachute and a 28-ft-diam (8.5-m) personnel emergency � at

circular parachute used by the U.S. Navy. References 46–49 give
ample details on their construction,including the type of cloth used.
These parachuteswere found to have a 22 ft/s (6.7 m/s) and 16.6 ft/s
(5.0 m/s) terminal descent rate while carrying payloads of 100 and
120 lb (444.8and 533.7N), respectively.The other parachutestested
included a one-of-a-kind U.S. Army humanitarian cargo delivery
cruciform parachute of 3–1 aspect ratio, built out of two 9.2 by
24.0 ft (2.8 by 7.3 m) panels sewn into a cross and attached to 20
suspensionlines of length 19.7 ft (6.0 m). Also tested were (approx-
imately) half-scale models of this U.S. Army cruciform parachute,
built out of two 4.2 by 10.7 ft (1.3 by 3.3 m) panels and 20 suspen-
sion lines of length 12.2 and 17.0 ft (3.7 and 5.2 m). The terminal
speed of these cross chutes was measured at 17.8 and 32 ft/s (5.4
and 9.7 m/s) while carrying payloads of 100 and 128 lb (444.8 and
569 N), respectively.

Initial Conditions and In� ation Model
Testing Eqs. (1), (9), and (10) during the postin� ation phase re-

quires using initial postin� ation deceleration data, that is, Vi and
C init , which in turns requires the knowledge of the parachute’s de-
scent rate and drag function obtained at the very end of the in� ation
phase. This further requires the knowledge of the fall rate and drag
function of the parachute during the entire in� ation phase. As dis-
cussed in Ref. 26, directly calculating the drag factor from test drop
data in general is particularlydif� cult given that the needed acceler-
ation, instantopenedsurfacearea, and velocity evolutionshave to be
measured independentlyand at a level of accuracythat is beyond the
capabilities of our instrumentation package. Instead, we have used
a well-established simulation method to duplicate the time depen-
dence of the parachute riser force, drag area, and payload descent
rate during in� ation.46;50 The formalism is based on the use of the
following equations of motion, written here to simulate the tangen-
tial deceleration and speed along the ballistic-like trajectory of a
payload–parachute system dropped from aircraft13;50:

ma D ¡1

2
½S.t/C.t/V 2 C W cosµ (17)

S.t/C.t/ D b1t 6 C b0 (18)

dµ

dt
D ¡g

sin µ

jV j
(19)

The constant b0 corresponds to the parachute’s drag area before in-
� ation, that is, b0 D S.0/C .0/. On the other hand, b1 is expressed
in terms of b0 and of the drag area at the end of the in� ation
phase, namely, as b1 D [.S.t in�

f /C .t in�
f / ¡ b0/]=.t in�

f /6 . Test drops
performed over the past decades have shown the t6 law to work
very well with most in� ating, low permeability, and low geometric
porosity parachutes such as cupped parachutes and low aspect ratio
cruciformparachutes.46 Establishedfrom the directmeasurementof
the ratio 2.ma ¡W cos µ/=½V 2, this law takes into considerationall
effects relevant to the unsteady aerodynamicsacting on an in� ating
parachute, including coacceleratedair mass and the actual opening
and spreading of the canopy. Note that Eq. (17) neglects the elastic
response of the suspension lines and parachute cloth during in� a-
tion, which for the light payload weight used here allowed the full
transmissionof the drag force to the load measuringinstrumentation
in a timescale much shorter than the in� ation time.

A comparison between the numerical solutions of Eqs. (17–19)
and themeasuredriser loadingduringin� ationis shown in Figs. 3–6.
The computer simulations were carried out using the following
sources of data for input parameter determination: direct measure-
ments for m and ½ , video analysis for S.0/ and t in�

f , load cell mea-
surements for Fdrag.t/, and rate of descent (terminal regime) for
C steady

D . Assuming C.0/ » 1 to account for the drag of the payload
box at the onset of in� ation, and using S.0/ from video, gives the
valueofb0 requiredbyEq. (18).On theotherhand, thedetermination
of b1 required knowing not only the value of S.t in�

f / and t in�
f (ob-

tained from video) but also the value of the product S.t in�
f /C.t in�

f /.
This number, as well as the value of V .0/, was obtainedby repeated
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Fig. 3 Total parachute riser force per unit payload weight vs time.

Fig. 4 Total parachute riser force per unit payload weight vs time.

Fig. 5 Total parachute riser force per unit payload weight vs time.

simulations of Eqs. (17–19), until the best � t of the measured riser
force was achieved, as shown in Fig. 7. (Some very good � ts were
achieved.)The values of all parameterused are shown in the � gures.

Postin� ation Deceleration and Drag Model Validation
During the postin� ation phase, the equation of motion along the

trajectory tangent evolves into the following form, which directly
follows from Eqs. (1), (9), and (10):

ma D ¡ 1
2 ½SC init.V=Vi /

¯ ¡ 2V 2 ¡ ½ºchute a C W cosµ (20)

Here the time dependence of the parabolic trajectory angle is still,
given by Eq. (19). Note that the value of ¯, Vi , and C init required
for the solution of Eq. (19) and (20) are completely determined by
the ending conditions of the in� ation phase simulation. No further

Fig. 6 Total parachute riser force per unit payload weight vs time.

Fig. 7 Riser loads vs time; samedrop and parachuteconstruction data
as in Fig. 6.

tuningof the drag model is actuallypossible.Figure 7 shows that the
model performs well when the in� ation simulation performs well
and performs badly when the former performs badly. The compari-
son between theory and experiment is also shown in Figs. 3–6.

Comparison with Experiment
Figures 3–6 show the comparison between the calculated and ex-

perimental riser force, during and after in� ation. In agreement with
most unreefed parachutes studies of the past, 46 the computer simu-
lationsshow the moment of maximum openingforce to occurbefore
the full spreadingof the parachute.When the small-amplitude � uc-
tuationsin measureddrag caused by the elastic natureof the suspen-
sion lines and fabric � utter (and possiblyby localwake recontactef-
fects) are discarded, the agreement between theory and experiment
is good for both cruciform parachute sizes and for the half-scale
round parachute (C-9 parachute). For these cases, our deceleration
model gives a good estimate of the deceleration rates after the end
of in� ation (very high rates) and just before settling into terminal
velocity (very low rates). According to Eq. (9), such rates should be
proportional to V ¯ ¡ 1. On the other hand, the match between theory
and experiment for the full-scale Navy round parachute example
could be best characterized as “fair,” for reasons to be discussed
further.

Figures 8–11 show the corresponding time evolution of the cal-
culated drag coef� cient. Figure 10 in particular shows the effect
of changing the values of V0 and C.t in�

f /S f . Quite remarkably, the
half-scale parachutes feature higher values and rates than the full-
scale parachutes. This is explained by that both sizes of parachutes
were deployed at the same speed and altitude, thereby causing the
in� ation time scale to become much smaller for the half-scale than
for the full-scale parachutes, that is, twice as fast for the half-scale
parachutes.46 Not having the time to decelerate substantiallycauses
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Table 3 Calculated deceleration properties of the parachutes studied in the test dropsa

Half-scale cross Half-scale C-9 Full-scale cross Full-scale U.S. Navy
Property D D 10:7 ft D D 15:0 ft D D 24:0 ft D D 28:0 ft

C init /C steady
D 3.25 3.12 1.06 ¼1.00

Vi =VT 1.43 1.33 1.63 1.52 and 1.41
¯ 5.29 5.98 2.12 1.95 and 2.13
±.ti / 0.64 2.31 1.24 3.17

aInput data shown in Figs. 3–6.

Fig. 8 Calculated drag coef� cient vs time during the postin� ation
deceleration phase; same input parameters as in Fig. 3.

Fig. 9 Calculated drag coef� cient vs time during the postin� ation de-
celeration phase; same input parameters as in Fig. 4.

Fig. 10 Calculated drag coef� cient vs time during the postin� ation
deceleration phase; same input parameters as in Fig. 5.

Fig. 11 Calculated drag coef� cient vs time during the postin� ation
deceleration phase; same input parameters as in Fig. 6.

the smaller chutes to open at higher V .t/, leading to quicker open-
ings and higher forces than the larger chutes. All of this would con-
tribute to drag coef� cients that would be larger for the former than
for the latter. Table 3 shows the calculated values of C init=C steady

D
and ¯ for the four parachutes tested. According to Eq. (10), the
drag force would vary as FD / V 5:29 , V 5:98 , V 2:12 , and V 2:00 for
the half-scale cruciform parachute, half-scale C-9 parachute, full-
scale cruciform parachute, and the full-scale U.S. Navy round
parachute, respectively.

With regard to the trajectory requirements discussed earlier,
Table 3 also shows the values of the ratio Vi =V f as calculated from
the numerical solutions of the model. Averaged at Vi =V f » 1:5,
these values fall well below the limit of Vi =V f < 4 set forth
by Strickland and Macha to avoid substantial canopy deforma-
tion/de� ation from wake recontact.26 Table 3 also shows the sim-
ulated values of the deceleration modulus at the beginning of the
postin� ation phase, pointing to all drops being in the desired range
of ±init » 100 , namely, ±init · 3:0. In that respect, looking again at
Figs. 3–6 shows that the agreement with experiment is actuallybet-
ter for those cases where ±init » 1 or less.

Conclusions
A new model of the drag force generated by a decelerating bluff

body was derived and shown to compare favorably with parachute
deceleration data collected during recent test drops. Its most inter-
esting features are as follows: 1) a clear dependence on the history
of the trajectorybefore deceleration;a nontrivial speed-dependence
of the drag force, translating into power laws that are much dif-
ferent from the familiar V 2 power law; 3) an illustration of the
deep connectionbetween deceleratingparachute aerodynamicsand
acceleratingwind drifter aerodynamics;and 4) a great numberof in-
teresting applications, including the motions of in� ated parachutes
and the motions of disk-like shapes that accelerate and decelerate
sequentially.

Furthercomparisonwith experimentaldata is of coursenecessary.
Most useful would be the data of a tow-tank experiment similar to
that of Higuchi et al.23 and Balligand and Higuchi,24 but dedicated
to the study of constant decelerating motions without drag direc-
tion reversal (if such a correlation is possible). It would help clarify
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whether Eqs. (9) and (10) can be used for decelerationsthat yield an
increasingand discontinuous±.t/. Comparison with computational
� uid dynamics-type computer simulations such as Strickland’s41

should be entertained as well. Combining the predictions of the
model with the results of the latter would be very useful in as-
sessing quantitatively the effects of various initial motions before
deceleration.
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